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Abstract

This paper advocates that some limits of the rational agent hypoth-
esis result from the improper assumption that one individual should be
modeled as a single rational agent. We model an individual composed of
two autonomous and interacting structures, conscious and unconscious.
Each agent utility form depends both on external signals and other struc-
tures’ actions. The perception of the signal depends on its recipient and
its grid of interpretation. We study both the static and dynamic version
of this interaction mechanism. We show that the dynamics may display
instability, depending on the structures interactions’ strength. However, if
unconscious has a strategic advantage, greater stability is reached. By ma-
nipulating other structures’ goals, the strategic agent can lead the whole
system to an equilibrium closer to its own optimum. This result shows
that some switch in the conscious’ objective can appear. Behaviors that
can’t be explained with a single utility can thus be rational if we add a
rational unconscious agent. Our results justify our hypothesis of a ra-
tional interacting unconscious. It supports the widening of the notion of
rationality to multi-rationnality in interaction.
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"[...] in this you should let yourself be guided not by any fized pur-
pose but mainly by intellectual curiosity and a spirit of exploration.”
Hayek, Friedrich A. 1944. ‘On Being an Economist’

1 Introduction

For about a hundred years, Slutsky’s results' have been consistently rejected.
Only recently did Browning and Chiappori (1998) show that individual con-
sumers do indeed solve Slutsky’s equations, even if this optimization is not done
consciously. This result has generally been taken as a confirmation of the ratio-
nal agent hypothesis : individuals are infinitely rational, and their decisions are
those of utility-maximizing agents.

To be fair, what Browning and Chiappori results mostly show is the exis-
tence of an unconscious rationality. The shift is however easy to understand :
conscious and unconscious being part of the same individual and receiving the
same signals, it can be assumed that they are endowed with the same informa-
tion and utility, i.e. preferences, goals, actions, etc... Nothing distinguishing
them, it is logical to combine them in one rational action, i.e. the agent’s ac-
tion. In this respect, to demonstrate the unconscious rationality is equivalent
to proving the whole agent’s rationality.

Yet countless arguments and experimental facts seem to demonstrate the
agent’s irrationality. Allais? and Kahneman-Tverski®, for example, have shown
that under simple situations, agents display systematic psychological biases.
And indeed, agents’ irrationality is usually attributed to psychological factors. It
is assumed that individuals are, most of the time, driven by their emotions, and,
ultimately, their unconscious. The action being irrational, so is the unconscious,
and so is the agent.

If the unconscious is indeed irrational, nothing can be said about it, and we
must reduce ourselves to sum the list of its behaviors. If we are to understand
anything about the unconscious, we have to suppose him to be, at least partly,
rational : we must endow him with all the attributes of the rational agent, in
the economic sense of the term. Besides, this is what Browning and Chiappori
results tend to prove. The question therefore is not to know whether the uncon-
scious is rational or not, but rather in what respect his rationality differs from
the conscious’ rationality.

Note that utility optimization, possibly including some forecatings, has al-
ready successfully modeled (unconscious) automatic behavior, for example in the
motor or visual system *. These results confirm that economics is relevant to
explain unconscious neural processes. Yet similar models for conscious decision
making, and, more generally, non automatic processes, have been highly critized.

1See [38].

2See [2].

3See [26].

4See [35] for an overview.



The main criticism is that they should include some unconscious phenomena.
It advocates the use of partial rationality to describe seemingly unrational, or
sudden switches in, choices.

For example, a well know anomaly is described by the following situation :
In a restaurant, a consumer can choose chicken or beef. He orders chicken. But
when the waiter suggests a third dish, fish, the consummer orders beef. This
examplify the independance of irrelevant alternatives. Some choices, even when
they may be rational, lack intelligibility.

In this paper we confront this problem by extending the range of the ra-
tional explanation. We advocate that some of the limits of the rational agent
hypothesis result from an improper assumption: the fact that one individual
should be modeled as a single rational agent. What can suffice to explain au-
tomatic processes should be extended for more complex tasks. It seems natural
to postulate decision making not only involves the conscious individual but also
some rational unconscious processes.

This question has already been adressed in [31]. The author considers the
individual as a "dual agent", i.e. the result of two distinct agents, conscious
and unconscious, endowed with their own utility, goals and preferences. Impor-
tantly, although they receive the same signals from the outer world, both the
conscious and unconscious interpret these signals in different way. Their actions
are rational, but the differential of information between them creates a bias in
the action of the dual agent.

However, this simple model does not explain the interactions between con-
scious and unconscious. Besides, it lacks of dynamics. One of our goals is to
remedy these weaknesses.

In order to implement this program, we will show that a cognitive uncon-
scious can rationaly modify conscious actions and representations, by inducing
changes in choices, goals, as well as systematic biases in actions. This does not
solve the above anomaly, but gives some intelligibility to seemingly irrational
an fluctuating preferences and choices.

Our results justify our hypothesis of a rational interacting unconscious, and
supports the widening of the notion of rationality to multi rationality in inter-
actions.

More precisely, we model an individual, the dual agent, as composed of
several autonomous and interacting rational agents, or structures. These struc-
tures differ in their goals, information, and action. For the sake of simplicity,
we will first assume two structures, the "conscious" and the "unconscious" The
first structure schematically describes the agregate of the whole set of conscious
processes. For the ease of exposition, the second structure merely gathers the
remaining processes.

Fairly enough, this assumption, although practical in our demonstration,
could be taxed as dubious. The unconscious could be more acuretely modeled
by a set of multiple autonomous processes. Indeed, our simplifying assumption
will later be relaxed to include an arbitrary number of structures.

Besides, one could argue that the distinction between conscious and uncon-
scious is not clear cut. Unconscious contents can become conscious and vice-



versa in a continuous flow. In this circumstances, disentangling the two could
seem artificial. However, we argue in this paper that this complexity is the
mere consequence of two interacting agents, exchanging information, and im-
pacting one another The dual agent is precisely the result of this interaction
and etanglement.

The key point of our model is that each agent utility varies in time. Actually,
its form depends both on external signals and on internal ones, i.e. the other
structure actions. Moreover, each structure has its own grid of interpretation.
Therefore, each structure will interpret the same signal in its own, specific, way.
Some signals may be considered as irrelevant, and as such be disregarded by
a structure®. Typically, we can assume that the conscious structure interprets
external signals acurately, whereas the unconscious interpretation may refer to
past or even symbolic events. The archetypal example is the psychoanalysis
view of the unconscious that may, more often than not, use condensation and
displacement.

These assumptions allow us to model reactive structures : the scene they
build is adapted to the outer world, yet is also influenced by the other structure
reactions. In other words, each structure taylors the system of representation
of the other. It is this mutual influence that creates the entanglement. It can
also explain the variation in goals without referring to external modifications.

We study both the static and dynamic version of this entanglement mech-
anism. Considering in parallel the case of, first, two non strategic structures,
and second, one structure having strategic advantage, we show that the dynam-
ics may display instability, depending on the structures interactions’ strength.
However, under strategic advantage, greater stability is reached. By manipu-
lating the other structure’s goals, the strategic agent can lead the whole system
to an equilibrium closer to its own optimum. He can do so without inducing an
over reaction from the non strategic agent.

This result shows that some switch in the conscious’ objective can appear,
even in a constant environment, through this interaction mechanism. Behaviors
that can’t be explained with a single utility can thus be rational if we add a
rational unconscious agent.

The paper is organized as follows : in section 2, we describe a general pattern
of interaction between various autonomous structures. Those structures inter-
act through their exchange of information. Both agents receive outer signals,
as well as inner signals that are the other structures’ actions. They process
these signals to produce some information. The signals may, when relevant,
activate the structure. Once activated, the structure builds a utility function
from its information, and optimizes it through its action. In section 3 we present
a static model of interaction between two structures, "conscious" and "uncon-
scious". Its simple pattern is general enough to convey the main points of section
2. The model’s equilibrium is studied and discussed for two cases : two non
strategic agents, and one strategic agent (unconscious) facing a non strategic
one (conscious).Section 4 generalizes the pattern of section 3 and develops a

5In that respect, we follow the view presented in [33].



general dynamic model of interaction between n structures. At each moment
t, the structure’s utility is shaped by some parameters. These parameters de-
pend on the other structure signals, i.e. actions, as well as on the external
signals®.Section 5 applies the section 4 results to a dynamical version of section
3 model, and draws the implications of its dynamics. It shows, in particular,
how the strategic agent can shift the goal of the non strategic agent to reach
his own objective more easily. The last section concludes and present some
perspectives for further research.

2 Setup

We will first precise our assumptions about the conscious and unconscious, as
well as their interactions as rational agents.

2.1 Hypotheses
2.1.1 Conscious and unconscious

We suppose that all human activity originates in the unconscious, in the neu-
roscientifical acception of the term. More specifically, we suppose the existence
of autonomous and interacting unconscious structures, endowed with a certain
degree of planification and reflexion. It is the notion of "cognitive unconscious",
introduced by Kihlstrom (1987)7. According to this notion, some unconscious
processes can show, at least to some degree, awareness. Besides, the survey [32]
for example, describes how these autonomous units are capable of coordination,
and present a pattern of metastability.

The notion of unconscious studied here is inspired by the combination of
these two approaches : the unconscious is a set of structures more or less au-
tonomous and linked one to the other. Under some conditions, part of these
structures become conscious. We call "unconscious" the structures non emerg-
ing to the conscious at a given point in time. By opposition, we call "conscious"
the set of unconscious structures having emerged to the conscious. The con-
scious can therefore be seen as a workspace directly fed by the unconscious.

As described, conscious and unconscious are, technically, merely aggregates
of sub-structures loosely linked to one another. In the following, we will set
aside this fact, and will indifferently qualify them as "structures". This is a
useful approximation that will not modify our results.

These structures are rational agents receiving and sending signals.

6This fit at least partly with Edelman’s presentation of consciousness in [10]: each structure
builds a scene at a certain time through the entrance and reentrance of external as well as
internal correlated signals.

TAn account of this theory can be found in [23].



2.1.2 Signal and structures

Both conscious and unconscious receive a continuous flow of signals originating
from the outside environment, or equivalently, from the other structure. Each
structure receives all the signals fully, and screens them according to its own
grid.

Each structure operates according to its own pattern. This pattern is a grid
of a priori characteristics, according to which the structure analyzes a signal.
Exactly in the same way as a photoelectric cell fail to react to a sound wave,
and a phone ignores a ray of light, each structure reacts to the signals it can
screen through its own pattern, and extract from these signals the inputs it
can perceive. We will call "informations" these inputs. A structure that has
managed to extract an information from a signal is said to be activated.

The information is a signal to which the structure has given a special mean-
ing, corresponding to its own operating system. The signals that will not have
been successfully processed by the structure will be fully disregarded.

Since the information is the interpretation of a signal, and not the signal
itself, the information extracted by the structure can be radically different from
the original signal.

Note that our approach is similar to the one developped in [33] where a
structure has its own grid of lecture, through which it attempts to construct
an object based on the signals it receives. Through a feed back process, it may
qualify this signal as a noise, and not activate itself.

2.1.3 Structure and utility

Conscious and unconscious are modeled as rational economic agents. This is
not unusual in neurosciences, where, for instance, the motor system of the body
is modeled as an agent minimizing a loss function according to an incoming
information®.

Fach structure has its own utility, which is a function of parameters and a
set of possible actions. Recall that the structure’s environment (i.e. the outer
world and other structure) send some signals that describe a situation. The
structure attempts to extract information from these signals. If it succeeds,
it will then be activated, meaning that it will adapt some parameters of its
utility according to this new information. Alternatively, if the structure does
not succeed in extracting information from the signals, it will not activated, and
its parameters will remain set to zero.

For a structure to be activated, only few parameters are sufficient, provided
that they are significant enough. The parameters of an unactivated structure are
set to 0. When a structure is activated, its relevant parameters take a specific
value that quantifies the information extracted from the signal. The utility thus
build will induce an action directly linked to the incoming stimulus.

8See [40] and [35] for example.



2.2 Actions

With its significant parameters now set to a certain value, the structure can react
to the context. The action it will take can be manifold : physical, physiological
or neuronal. It will optimize the structure utility, taking as given the value of
the parameters, as would any rational agent do.

2.2.1 The agents grid of lectures

Let us come back to the main point of this section. The information is merely
the structure’s interpretation of a signal. A single signal can therefore produce
different informations, depending on its recipient. This information is quantified
into parameters, the utilities true imputs. Each structure therefore perceives,
through one single signal, two different situations.

A minima, the unconscious is that part of the individual that is not conscious,
and continuously manages one’s vital functions. Breathing, hunger, thirst, for
instance, .are all vital functions and that are not performed consciously by the
individual and denote the action of an unconscious agent. Although minimalist,
this conception highlights the fact that, within each and every one of us, a
hidden agent operates according to its own objectives.

That the signals of the environment should have the same meaning for him
than for the conscious may seem dubious. The unconscious defined here is char-
acterized for a large part by its intemporality. Each second, it must act and
react to maintain an equilibrium aquired in the past, and still at stake.today.
On the contrary the conscious is marked by temporality. By its intentional-
ity, the conscious can handle multiple dynamic and variable representations, to
play with memories, to project itself. We can therefore suppose that its grid of
lecture is much more flexible and mobile than the one of the unconscious.

Consequently, the crucial distinction between conscious and unconscious lies
in the interpretation of the signals, and in the construction of the information.
Whereas the information of the conscious is marked by its temporality, the
information of the unconscious will be characterized by its intemporality. Given
a determined set of external signals, the unconscious has a static lecture of the
events: it continuously reacts to signals from which it systematically extracts
the same type of information. The conscious, on the contrary, extracts a wider
range of information from the signals. This gives him a more dynamic vision of
the situation, but also a more short-sighted one. The unconscious will interpret
the signals under a more permanent light.

2.2.2 Notations

To make things easier, S; will be any structure, aggregated or not, conscious or
unconscious. Only two (agregated) structures will be considered in what follows,
the conscious and the unconscious. By convention S; will be the conscious, and
S the unconscious.

Each structure, once activated, produces its own action, a; and as respec-
tively. Unconscious actions emerge into consciousness: a reflex, for instance,



stemming directly from the unconscious, is perceived by the conscious, and
used as information and parameter in its utility.

These two actions are not independent : as is taken before a; and, being
itself a signal, will impact S;’s information. as will therefore be both an action
and a signal to Sj.

2.2.3 Interaction between structures

Much of the structures’ interactions dynamics rests on the mutual perception
each structure has of the other. Whereas we may well, as individuals, be fully
aware that unconscious processes exist, this does not necessarily mean that our
conscious can actively use this information to his own advantage. To do so, he
should, first recognize the impact of the unconscious on its behavior, and then
be able to manipulate it.

Therefore, the analysis must take into account the number of strategic agents
it involves We can distinguish three situations :

1. No strategic agent : Conscious and unconscious are unaware of each other,
and consider the information they get as an outside data.

2. Two strategic agents.: Conscious and unconscious are aware of the other,
but, having no control over it, treat its signals as any other external signal.
This will result in a Nash equilibrium, with an outcome similar to the
above case.

3. One strategic agent: One of the agents is aware of the other and can
manipulate it through its signals.

3 Static model

3.1 Setup

3.1.1 Preliminary remarks

To illustrate our point, we will apply our setup to a specific and very basic case.
In what follows, we will suppose an agent A whose utility depends positively on
meeting people. We will mesure this outcome as a variable depending on the
amount of social life A can get. By assumption, each time A can go out (signal),
he feels a sudden strain that effectively limits his ability or willingness to do so.

The economic theory does not need the unconscious to explain this outcome.
It would model this sequence of facts by setting a cost to A’s outing. And indeed,
that’s what it boils down to, eventually. Yet one may wonder how such a cost
could arise, and be rationalized. Should it be fixed, or should it be reset at each
new situation in an ad hoc manner?

We will depart from this solution and assign to the unconscious agent a
utility distinct from the conscious. In A’s case, the unconscious has indeed
perceived the possibility to go out. However, unlike the conscious, going out



will diminish its utility. When A goes out, an additional adverse signal is sent
to the unconscious. He will need to counterbalance it with the means at its
disposal. \’s strain can now be read as the optimal reaction of the unconscious
to optimize his utility, given the (bold) action of the conscious agent.

These hypotheses model how and why the cost of an action can arise. They
further give a rational explanation to a fact that would otherwise seem irrational.
More generally, they show how a utility can arise to the conscious. Under the
impulse of external signals, the structures exchange signals, that in turn model
each other’s utility. Here, the conscious utility has been modified by the cost
arising from the unconscious action.

This approach is in line with the neurosciences and their study of the forma-
tion and variations of conscious contents. We are all aware of what is conscious,
we are aware of our goals, yet we seldom know the origin of these goals. Our
model rationalise these facts by supposing an unconscious agent continually
shaping both our utility and reality.

3.1.2 Description of the model

Having underlined the dynamic nature of the structures interaction, let us now
detail their modelisation.

The two structures are activated by one (common) signal. Each one reacts by
sending signals perceived by the other structure. This could go on indefinitely,
but to simplify the matter we will first consider a basic, one period interaction.
With a one period horizon and no temporal dependance, solving the model
coveniently boils down to to finding its long-term equilibrium.

Over this period, S7, the conscious, extracts and plans first. Only then does
Ss, the unconscious structure, react to S1’s planned action. This setup, open
to criticism, allows two concomitant actions, which satisfies our one period hy-
pothesis. We will later relax this assumption by introducing a delayed effect in
the dynamic model.

The conscious grid of lecture and action We mentioned in section 2.1.2.
that S7, the conscious, has a "temporal" grid of lecture. It is adaptable, and
relatively flexible to the present context. Sy is therefore able to read, interpret
and extract information from the signals in a relatively efficient way. So that,
were it not for Ss, a, would be set to ag, up to a random error term, as is usual
for the rational agent.

S1, receives a set of signals o, from which it extracts information and deduce
an action, a,, associated to a specific reward. This reward is a utility U; that
is a function of a,and ag, the parameter describing the optimal action in the
present context.

In quantifying the information through its parameters, the structure has
infered an external context. It has associated to it a utility. The shape of this
utility depends therefore on the information ag extracted from the signals o.

For our agent A , the set of signals o is an invitation to go out. ag would be
A’s optimal action, i.e. a time out, given his constraint. A knows that a, will



maximize his utility, and if he is rational, he will choose a1 such that a;=a,.

The unconscious grid of lecture and action Having an intemporal grid
of lecture, Sy interpretation of the signals can very well be poorly related to
the present context. Its reactions, however optimal in view of its own grid of
lecture, will, more often than not be inadapted to the situation.

Whereas S has received a signal ¢ and considers a,, Sz receives both the
signal o and the planned optimal action ag. It screens them through its own grid
of lecture, extracts from them an information, and parting, a utility radically
different from S;. We will call ag S5’s interpretation of ag. Sy sees ag as inducing
a loss in its utility. In the same vein, it interprets a, as a sub-optimal action
ay, and will, as such, try to counter it.

We have defined the unconscious as chiefly ensuring the agent’s vital func-
tions. The planned outing a, could, in our example, be seen as detrimental
for the metabolism. Other, deeper reasons could come into play. A past, long
forgotten experience could trigger a general fear of outings, seen as sources of
danger. Eventhough the information extracted by S2 has nothing to do with a,,
ag will then activate the unconscious utility. This will in turn induce a reaction.
We will call a, the unconscious reaction to the (combined) conscious action and
external signals. This action a, will be meant to set a cost to limit the conscious
action, prevent him to perform a,, and therefore limit its action.

To go back to or example, as could be a sudden strain or anxiety due to
the phobia, rendering the action of A difficult or impossible. Each structure’s
action being specified, we can now specify their respective utilities, as specified
by their interactions.

The agents utilities

The conscious utility 57 is described by the following quadratic utility :

1
U1 = 75((11 7(10)27(12&1 (1)

where the first term describes S7’s "own" utility, and the second is the cost
imposed by S5 to counter S action. Were there only .57, this second term would
disappear.

as is So’s reaction to Sp’s action. Insofar as S; ignores the existence of Sy,
S1 faces as without being able to precisely determine its origin. Consequently,
S1 will optimize its time out taking into account both its will to go out, and the
strain induced by actually going out.

The unconscious utility S remains unconscious, i.e. it does not appear
in the conscious framework. But being activated by the signal, it will send to
the conscious its own action, as.Its utility will also be described as quadratic,
and will be written :

10
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U, = E,, —7—21 -|—O(a2a/1—% (2)
2 2
- 4 _ %
= ¥ 5 + casaq 5

FE,, is the expectation that characterize So’s interpretation of the signals.
S5 intends to react to a), and will use a1 as a proxy for aj.
Sy suffers a}, his interpretation of a1, and his own action to counter af, as :

every action bears its own cost. Here, —7% — % is S9’s cost, both to suffer aq
and to react to it, i.e. to produce a strain.

Sy will nonetheless gain something in the process : casa). This gain in Sy’s
utility is directly proportional to the cost it imposes on S7, asa;. One structure’s
cost is the gain in utility of the other. S5 somehow discovered that the strain
diminishes the planned action. Setting v — a? > 0 ensures a stable maximum
for the utility in the two variables a; and a;.

Given this setup, and depending on the nature of the agents, two cases can
arise : either both agents are not strategic, or one of them is strategic and
manipulates the other. This would imply that one agent ignores the existence
of the other, or at least cannot counter it effectively.

Both agent could be defined as strategic. However dreams, somatic disor-
ders, phobias, amply demonstrate that we are more affected by our unconscious
than we would wish to be, and are condemned to take his actions as given
constraints. We therefore suppose the unconscious to be strategic, and the con-
scious to be non strategic. We will successively study the case for a non strategic
unconscious, and for a strategic one.

3.2 Interactions between agents
3.2.1 The non strategic unconscious agent

Here, structures can be seen as being non strategic, or both strategic and neu-
tralizing each other. Alternatively, they could even be unaware of each other’s
existence. Conscious and unconscious playing simultaneously, the situation will
result in a Nash equilibrium.

Each agent will choose its action according to its grid of lecture and given
the other action : whereas the conscious read a, and infers a; for what they
truly are, the unconscious, will read a, and a, as ag and a’l .

The equilibrium of the system is found by considering simultaneously the
two agents. Optimizing U; yields

a1 = apg — a9
and the equilibrium is found by replacing S, optimal response :

as = ozESza’1 = aay

11



This action could as well be the answer of an automate mecanically reacting
to af. The rational agent hypothesis does not necessarily refers to an individual,
but rather to a structure optimizing a utility. The motor system, for instance,
is well modeled by a learning rational agent”.

Resolving the system yields the following actions:

a1 = Qap — oaap
o

a; =
1+«
aag

az =
1+«

NS NS . .
where ag ) = 15 et aé ) = TrL are the actions of the non strategic agents.

Without the unconscious, the conscious optimal action would have been ag.
As soon as ag is systematically missed, we can infer from this bias the presence
from the unconscious. This bias results from the differential of information
between conscious and unconscious. This phenomenon has been explained in
[31]. Actually ag results from a misreading of a; by Sz. If the unconscious had
not set Fy,a] = ay, it could have given to a] its true value, 0, and would have
chosen as = 0. As a consequence, the conscious could have set a; = ag. With
this in mind, we rewrite :

ay = ag — a2

ap — aEs,a}

= a9 —« (E52a,1 - E81a/1)

The bias between a; and its optimum ag is —« (Es,a} — Es,af), and is the
exact expression of a difference of information between conscious and uncon-
scious.

[31] shows this action is in fact the optimal action of a single agent, the dual
agent.

This dual agent is the individual whose utility explicitely encompasses both
his conscious and unconscious utilities. As such his action is a combination of
two actions, the conscious and unconscious ones respectively, thus including the
previous bias in its action. Note that the dual agent, seen as a single individual,
has the remarkable property to produce two different forecasts for one unique
signal, revealing the combination of two interacting autonomous agents. This
notion is equivalent to this paper approach.

How could the bias be qualified? It originates in a difference between per-
ceptions, that counters or shift an action. It can be psychological or physical.
Besides, it does not correspond to a seemingly rational reality, and can result
in a strain or a well-being. We will sum up these elements by stating that this
shift is an emotion.

9See [40].

12



This emotion is, by definition, the result of a differential of information
between conscious and unconscious. As such, it could potentially reduced to 0,
provided two identical grid of lectures.

Here, this differential of information results in a loss in welfare : had the
unconscious recognized that a; # Fs,a, he would not have acted this way, and
the conscious would have reached ag . The two agents utilities would be equal
to their reference value 0. Here, we rather have:

1 2
UNS _,0‘(0‘7+2)a[2)<0
2 (a+1)
1 2
UM = 227 <o
2 T(a+1)

We will compare these values to the case of the strategic agent below.

3.2.2 The strategic unconscious agent

The general setup is unchanged : S; and S act simultaneously. Sp still
optimizes its utility taking as given Sy’s action, and set its optimal action
a1 = ag — az. However, Sy now observes S; and knows its optimal reaction
ay. It will take it into account and use it as a parameter to set its own action
as.

We find as by replacing a; as a function of ay in S3’s utility, and by opti-
mizing over ag, which gives :

12 2

ay T

U2 = E52 —’7? + aa2a1 — ?
2 2

ai as
= —v— + - =
}/2 a0 9

_ (a0 — )’
= + aag (ag — ag) —

The optimum is ay = 2((5:;21 ag. We then deduce that aq is :

2
a3

2

a; = ag— a2
1+«
—a
14+ 2a+7 0

ag et aés) = %ao the agents’ actions under the

(8) _ _14a
We note a;”’ = TT2a17

strategic case.

We can check that ags) - agNS) = (oz%—l)oéiglvwao < 0 This shows that the
unconscious, by manipulating the conscious, has reached a higher equilibrium
from his perspective : compared to the previous case, the conscious’ action is
reduced. Concretely, our agent A will go out even less than before.

(S) _aéNS) _ _(aty) aa

1 — &ao
But since ay ST 1%0 " Tra

from a stronger reaction of the unconscious than in the non strategic case.

2
— Y- 3
= aom > 0, this results

13



3.2.3 Utility comparison

We can compute the difference of utilities between the strategic and non strategic
case for each agent :.

2
US*UNS _ 1 (aQ_’y) a(z)
> 2(a+1)° 2a+v+1)
1 (a? — da+~v+a?+2)a?
Uf*UfVS _ 7( 7)(2 v 2) 0 -9
2 (a+1)"2a+v+1)

There is a clear gain for S; to be strategic, as well as a loss for S to be
manipulated. Nevertheless, the unconscious gain in utility refers, by definition,
to past situation and fully-reconstructed situation, furthermore based on biased
signals. From the social point of view, and over the long run, the conscious loss
in utility should result in a general loss for the dual agent.

4 (General case and Dynamics

4.1 General setup

Let us now introduce a general dynamic model of interactions that will de-
scribe n structures (practically, n = 2) sending arbitrary signals and taking any
possible actions. It will encompass a dynamic version of the previous model.

Recall the general pattern of interaction that arised in the static example :.

- A structure S; is described by a vector of possible actions X; (¢) and a set of
parameters P; (¢). Both live in some, possibly different and infinite-dimensional
spaces.

-P; (t) is the information S; extracts from the signals and actions sent by
other structures and the outer world.

- S;’s actions X; (t) can act as signals for an other structure S;, and in turn
influence P; (t).

-S; utility directly depends on its actions, as well as on P; (t). S; utility at
time ¢ is given by, at the quadratic approximation':

Vi (t) = —%Xf (8) AsX; () + X7 (8) BiPs (1) — %Pf ®C:Pi(t)  (3)

At each point in time, the utility is fully dependent on both the outer world
and the other structures through P; (¢). Besides, the utility exhibits its specific
pattern through the matricial coefficients A;, B; and C;.

The form of the utility V; (¢) deserves to be emphasized : it explains why,
and how, the conscious utility evolves through time. The structure’s rational
choices can vary at each moment in time and evolve with its environment. But
they also, and more importantly, depend on other structures’ perception of the

107 the following, Yt (¢) denotes the transpose of any vector Y ().
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environment. This can explain why some facts may appear important at time
t, and no longer at time ¢ + 1. This does not necessarily occur in a seemingly
continuous manner, since the conscious is unaware of the unconscious, and is
subject to it.

Ultimately, S; optimizes at time ¢ an intertemporal utility :

Ui(t) =Y BiVi(t+n)

n>0

where (3, is the rate of time preference and . ranges between 0 and 1. The higher
the 3,, the less the future is discounted by the structure.

4.2 Time schedule and information process

The interaction between structures is dynamic : there is a delay between the
moment an action is taken and the moment it is processed as an information.
Each period t is thus subdivided in two steps: first, all structures process the
information, then all react to this information at the same time. The delay
between the information process and the action depends on each structure time
scale, and can be relatively short. For the sake of simplicity, this time scale
will be considered uniform across structures. The structures will extract the
parameters from the signals, through the information process, as mentionned
earlier.
We model our hypotheses on the parameters P; (t) in the following way.

Pi(t) =Y F" (£) X; (t — 1) + F"" () Pegy (t)
i#)
where P..; (t) describe the external situation.
F%3 (t) and F»®t (t) are filter matrices through which S; interprets signals of

S; and the external signals, respectively. It models a linear information process
where information P; (¢) is reconstructed from the signals.

4.3 Non strategic agents

Let us now describe the dynamics of a system of n non strategic structures.
Here again, as in the static case, structures do not deliberately influence one
another . Both take their parameters as given, and choose their action regardless
of its effect on other structures at time ¢ 4+ 1. Since their is no intertemporal
constraint, each period is independent. Each structure thus optimizes V; (t) one
period at a time, that yields the optimal action for S; :

X; (t) = D;P;(t) = D; | Y F" (£) X (t — 1) + F""" () Py (t)
i#£]
with D; = A 1 B;.This equation represents the dynamics for the action vector

X; (t) for S;. Tt is not self-consistent, since it involves the other structures
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dynamics. To solve the dynamics for each structure, we need to stack all the

structures dynamical equations into one unique system. We introduce a vector
Xy (t)

(X () = that encompasses all actions at time ¢.The previous
X, (1)

dynamical equations can be rewritten as:
(X )= (F®)) (X (= 1)+ (£ (1) Pt (8

where (F’ (t)) and (F”t (t)) are the notations for the following concatenated

matrices.

) V- . Dy Foev (1)
e I R Gl

To simplify the computation, we will assume that the filters FJ (t) and
Ftert (¢) are independent of time. The solution of the system is

(X (m) = (F)" (X (0) +(X.) ()

Where (X,) is the equilibrium solution given by a static situation where
A\ L/
(X (1)) = (X (t — 1)) . We find that (X.) = (1 - (F)) (Ft) Peat (1).

The stability of the dynamics and its specificities will depend on 2 eigenval-
ues. Since little can be infered from the general case, we will study in greater
detail a practical example in section 5.

4.4 The unconscious as a strategic agent

Setup and information As in the static case, one structure, say .S,
among S; with j = 1,...,n, is strategic. For the sake of simplicity, filters
F3 () and F7¢t (t) are independent of time.

For all j # ¢, the optimization problem is unchanged and leads to the optimal
response to the parameters: X (t) = D;P; (t) for j # 1.

However, S; now differs from others structures in its optimization.

Consider S;’s intertemporal utility:

Ui(t) =Y BIVi(t+n)

n>0

with
Vilt) = — g X1 (1) AKX (1) + XE (1) BiPi (1) — 3 PE (1) P (1)
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The important point here is that S; actions X; (¢) also influence V; (¢t 4+ n) for
all n, through P; (t + n).

Actually, all periods are interdependent in the optimization problem : X; ()
influences other structures’ parameters at time ¢ + 1. Doing so, it impacts
X, (t+ 1), that in turn influences Py, (t + 2), for k # j at time t+2. The process
goes on indefinitely, spreading X (¢) ’s effects over all subsequent periods.

S;, beeing strategic, knows this. At time ¢, it will take all subsequent periods
into account, and, to do so, will forecast the future parameters. Eg, ,O (t+ n)
will denote S;’s forecast at time ¢ of an arbitrary quantity O (t +n ). We will
assume these forecasts to be linearly dependent on S;’s information at time ¢ .
We also assume that S; knows the whole set of information at time ¢, i.e. all
utility functions, external signals, past actions and filters : it knows the whole
vector of parameters (P (t)) ,the filters. F'*J (t) and F7¢** () and S;’s utilities!!.

S; linear forecasts of the future external parameters, given his set of in-
formation, are Eg, , Pzt (t +n) = FffL,, (P (t)). FffL, is thus the matrix that
expresses Eg, , Peyt (t +m) as a linear function of the present information (P (¢)).

Es, , Pext (t + n) is the only forecast S; needs to build all its expectations
about the future : actions at time t+n depend on the signals received (P (¢t + n))
, themselves depending on actions at t+n—1 , up until time ¢, where optimization
is performed. S; being rational, it is able, through the dynamic equations, to
reconstruct the whole set of future actions and parameters, provided that the
future exogenous parameters are forecasted.

M’s unconscious knows how his conscious works, and, provided acurate fore-
casts of future external signals, will be able to infer \’s conscious actions and
parameters. He will therefore be able to manipulate him.

The strategic agent’s optimisation To optimize U; (¢) and resolve %Ui (t) =
0 requires deriving the dependence of Eg, ,P; (t +n) on X (t).
Appendix A shows that Eg, ,P; (t 4+ n) is given by:

Es, Pi(t+mn) = ILM"(P(t)) (5)

n
+IL Y M''Es,, (VXi (t+n—1) + WP (t+n+1-1))
1=1
where II; is the projection operator on \S; space. Matrices and vectors (M, ;)

(P (t)), V, W are concatenations of the structures data!?.
Each block of this concatenation is defined by :

1=1,...n,7=1,...n?

My = F? (t)(1—08;4) Dy for j#i
M, = F" (t)Dy

Vi = FPN(t) = 6P (1)

W, = [ient t)

11 A lack of information about the parameters could be modeled. It could be done through
setting some parameters estimation to 0. However, assuming that S; fully knows (P (¢)) does
not impair the generality of our results.

12Gee section 4.3.
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The formula 5 yields the dependence of P; (t + n) in the action X; () :

0]
0X; (t)

Es,, (P;(t+n)) =1L,M"'V

Appendix B shows that, inserting this result in S;’s intertemporal optimiza-
tion problem, %Ui (t) =0 yields :

0 = B | Y IL(BM)" "'V (B,Gi — Cilly) [(M + VGy)" + ME™] (P (t))]

n>1

—A; X; (t) + B;P; (t)
whose solution for S; ’s optimal action is
Xi(t) =G (P (1))

where the matrix G; satisfies :

G; = D;II; + B,11; (Z (B:M)"V (B;G; — CilL;) ((M +VG)" 4+ Mﬁiﬂ))

n=0

1%t is the matrix that projects (P (t)) on P.. (t). Mt is given by

n
Mt =3 (M +VGy)' T WE, I
1=1
The defining equation for G; being matricial, it has usually to be solved nu-
merically. However, an explicit solution will be given in section 5 for a basic
example.

The dynamics of the system We have found the strategic structure
action : X; (¢t) = G; (P (t)), and we further know that the non strategic structure
choose X (t) = D;P; (t) for j # i. We can gather all these dynamical equations
in a unique concatenated system. This leads to:

(X ( H) (X (¢ = 1) + (F= (1)) Pave (1

encompasses all actions at time ¢ and

H) = (F(
X1 (t)
X, (1)

(ﬁ‘ea:t (t)>

1



with the block matrices (F‘ (t)) and (ﬁ‘e‘“ (t)) ) defined as:

Jik

( )Jk = (DiF7* (1)) = Lni
(Fw),, = @F* W),
(Femt (t)) _ ( D.Fi seat )j o
(Feact (t))z _ ( G Fiert ( )

The solution of this dynamical system is thus strictly similar to the previous
non strategic case. The equilibrium is obtained by setting (X (¢)) = (X (¢t — 1)),
and leads to :

)= (1= (F®)) " (F ®) Pr 0

This allows to solve the system at each time t = n:

(X () = (Fm)" (X (0) = (X)) + (Xo)

This dynamics is similar to the non strategic case. However, one major dif-
ference arises here: whereas, in the non strategic case, S;’s action was based on
its own, sole parameters, S;’s action is now based on the whole set of parameters
at its disposal, including those pertaining to other structures. This will have a
significant impact on the results, as shown now.

5 A dynamic two structures model

Our general set up can be straightforwardly applied to the simple example of
section 3.

Let us consider a dynamic version of this model with n = 2 agents. Agent ¢
intertemporal utility is written:

1) =35IVt +n)

n>0
and utilities V; (¢) at time ¢ are
Vi) = —g (@ (1)~ a0 —as (t)ar (1) (©)
a2 a2
Bt = 10 4 an @a @) - 2 (m

These are merely (1)and (2)with time dependent actions.
These formulas are encompassed in our general set up. Actually V; (¢) and
V5 (t) can be cast in the form 3 when we identify:
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Xi1(t) = ai(t), X2(t) = a2 (t)
P1 (t) = ( aga(()t) ) y P2 (t) = ax (t), Pext (t) = Qo
Al = 1731:(1 71),6’1:07142:1,32:&,02:’}/

Fl2() = ( ) ) JF2L() = 1, Fhert (1) = ( . >7F27m (#) =0

5.1 Non strategic agents

Applying 4 yields the dynamical system:
aq (t) _ 0 -1 aq (t - 1) + apn
a(t) )] \La 0 az (t—1) 0

NS ag
The equilibrium denotted by the upperscript NS is: < Z}VS ) = ( atl >
2 a+1

As a consequence,the dynamics can be solved as:

ar(n)\ [0 —1\" aq (0) aVs as
(ot )= (o) (C) - (2 )+ (s )

The equilibrium replicates the static case, and consequently yields the same
conclusions. However, the dynamics reveals an important additional result: the
equilibrium stability depends on a.

When 0 < a < 1, the unconscious reaction to the conscious action is mild,
and the equilibrium is relatively quickly reached, although with some oscilla-
tions. Each agent react to others actions in a damped way, leading to a stable
equilibrium.

When « > 1, the unconscious overreacts to the conscious actions. It induces
an increasing and explosive oscillatory movement around the equilibrium, that
results in big losses for both agents : each attempt by \'s conscious to go
out will be met by a stronger unconscious reaction. The conscious will try to
counter the perceived strain, further increasing the strain. The effect being
multiplicative, the strain will increase exponentially. We can assume that this
unstable dynamics will lead to a real disorder.

If, on the contrary, A’s unconscious propensity to react to the conscious is
smaller (0 < a < 1) the dynamics, will gradually fade away and settle down to
the equilibrium.

5.2 S, as a strategic agent

Appendix C shows that the unconscious optimal action is:

as (t) = aap + cay (t —1)
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with:

VOB +1)° — 40283 483 1
\/(753 + 1)2 — 40283 + 2085 + (743 + 1)

2
(834 1) = (453 +1)° — da (as}) ©
C =
2 (af3)
Whereas, in the non strategic case, S; was reacting to a; (¢t — 1) only, So
optimal action now depends on ag, S1’s objective.
Why is it so? Inserting as (t) = aag + cay (t — 1) in 6, Sy’s "effective" utility
can now be rewritten as:

Vi(t) = —% (a, () — ao)” — aagas (1) — [car (t —1)] ar (¢)
The last term is the cost So imposes on Sy described in section 3.

—1(a, (t) - ag)? — aapay (t) is a utility whose optimum is ay (£) = ag — aag.

So has clearly manipulated S7 system of representations by reducing its
optimal goal. It is now ag — aayg.

Rewriting —1 (a, (t) — a0)® — aagay (t) as —% (a, () = (ap — aag))® up to
an irelevant constant shows more clearly this downward shift imposed on ag.
Sy gains in this : in both utilities, as (t) was a cost. By shifting S;’s goal, Sy
reduces its own strain and in turn increases its utility.

So’s ability, as a strategic agent, to manipulate S; through its goal is of
course inherent to the model, where actions are signals and signals modify the
other structures parameters. However, this particular example clearly shows
how a conscious rational agent representations and goals can shift over time,
under the action of the unconscious.

On top of the strain to go out, our agent A now experiences a decrease in its
preference to go out : the unconscious has succeeded in shifting his tastes.

The dynamical system is now straightforward :

()= (2 o) () + ()

a’ (1—a)ao
and ts equilibrium is given by: ( a;g ) = ( (ih)ao >
c+1

A direct computation yields af < ai¥¥, a5 > al’ : compared to the non
strategic case, So imposes an equilibrium closer to a; = 0 . Both structures face
a higher cost as. It is however optimal for Ss, since it compensates this loss
through the reduction of a; and ag. We will detail below the mechanism Ss uses
to reach its goal.

Given the equilibrium, the dynamics is easily solved:
ar(n)\ [0 —1)\" a1 (0) Y\ [ af ay
(w(n))‘(c 0 ) ((azm) i )) T \as) @
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When ¢ < 1, the system converges toward the equilibrium. Inspecting C
shows that the dynamics is converging for all values of o and +, except in a
intermediate zone:

1<’y<ﬂi% and /v > a >

(837+1)
(1+83)

: by manipulating S7, So stabilizes the

dynamics.

When v and thus « are lower than 1, the non strategic mechanism remains.
The unconscious underreacts to the conscious actions, quickly converging toward
the equilibrium.

When v > é the unconscious overeacts but, since a is large enough, S will

successfully maﬁipulate S1’s goal. The larger v, the more ag — aag, Sis goal,
will be reduced. This goal having now shifted close to 0, S1’s incentive to react
is reduced. The equilibrium is reached and stable.

Only in the intermediate zone does S3’s overreaction fail to reduce Sp’s
goal. S7 reacts in turn, which triggers an explosive dynamics. It may seem
surprising that the strategic Ss could induce a suboptimal outcome in the long
run. However, one should recall that at time ¢, S optimizes a discounted sum
of utilities.The discount rate is B5. The dynamics is explosive because So, at
least partly, disregard the future!.

5.3 Utility comparison

The utilities at time ¢, in the equilibrium for both situations can be compared.
Denoting NS and S the non strategic and strategic agent respectively, in the
non strategic case, we find that:

2 2
1 agp ao 1a(a+2)
1-8,)UNS = - =2 _ - = T2
(1=56)0; 2<1+a a()) a<1+a) 2(a+1)2a0<
2 2
ag 2 ag
1+a) @ (HQ) 1,0%—~y
1- NS = — ( + = ~q2 <0
( Ba) Uy Y B 9 9 O(a+1)2

and in the strategic case:.

(o + 2083 + 985 +2) (e +98) ,

_Z - 2
2 (a+aps +v63 +1)

- (v —a?) (v82 + 2053 +1) 2
2a2ﬁ§ + 4a2ﬁg + 202 + 404763 + 40(76% + 4045% + 4o + 272ﬂ3 + 475% 4920

(1—51)U15 =

(1=8,) U5

The difference in utility is therefore :

13 The intertemporal utility is Z -0 B5Va (t 4+ n). 8 shows that the variables and Va (t + n)
nz

behave as ¢? with ¢ > 1. We can show that ¢ < 6—12 . Therefore, 85 V2 (t + n) behaves as Bg

: the intertemporal utility converges.
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20+ a?B3 + 2085 + B3 +2
2 2 2 2 a0
(a+1)° (a+afs+783+1)
182 (a2 —7)? (2a+~p82 +2 — 52
(1*52)(U2S*U§S) Y 2( 2) ( 5 2 3 22)ag>0
(a+1)° (a+af; +76;+1)

(1= 8) (US —UNS) = 1p2(a?—n) <0

2

As expected, there is a gain of utility for S, to be strategic. This, of course,
occurs at the expense of S; whose actions and goals have been distorted.

For the conscious, this loss in utility may well remain unnoticed : an external
witness would observe it, but as long as \’s preferences have been shifted, there
no reason why he should bother. Only by keeping in mind the past objective
will A realize that a shift has indeed occured, as well as a loss.

6 Conclusion

We modeled the "irrational" behavior of a single conscious agent, such as sys-
tematic bias, sudden changes in the preferences, by introducing interactions
between two rational agents, the "conscious" and "unconscious" .

This model has several distinctive features : First, each agent’s utility func-
tion is a function of other agents’ actions through some costs. Second, a strategic
agent can, to some extent, modify the other’s goal. The "conscious" can there-
fore experiment a switch in his representations, directly leading him to reduce
his objective, and in turn reducing the cost of the "unconscious"’ own action.

This result sheds a different light on the agent rationality debate. A model
with a single agent can hardly explain why goals can endogeneously change
through time or why some systematic bias appear in actions . In our setup,
these change and bias are the consequence of an interaction : an external signal
induces a conscious behavior, such as utility formation, information process,
planning...The unconscious uses its own grid of interpretation to react both to
the outer world and to the conscious action. Doing so, it induces a change in
the conscious’ perception of reality, such as a change in costs, or goals. This
could explain why seemingly irrational or inconsistent reactions appear through
time. It is the result of the manipulation of the conscious goals by a strategic
unconscious. Moreover, We have shown that the systematic bias between the
conscious’ actions and objectives reveals the difference in the two agents’ in-
formation processes. [31] advocates that emotions, associated to a welfare loss,
are the sign of this differential of information. If the unconscious is invisible,
and, like a blackhole, reveals itself through its manifestations, then emotions
could provide a practical way to explore and interpret the unconscious’ grid of
interpretation.

We can now take a different look at the independance of irrelevant alter-
natives and giva another explanation to the behavior of the consumer ordering
his meal. We could admit that the conscious agent preferences are ranked in
the following order : Fish > Beef > Chicken. When beef and chicken are
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suggested, his rational choice would be to choose beef first, and fish when it is
suggested. However the unconscious agent may have other views on the mat-
ter. He may consider that hidding his favorite choice is optimal : under this
assumption, when two options exist, chicken is optimal. When fish is suggested,
beef becomes optimal, being an equilibrium between the two agents preferences.
We can of course not prove this assertion for a particular individual. Yet it is
characteristic of our approach.

More generally, this set up provides a first step towards introducing multi-
rationnality to describe neural processes and choice formation. If automatic
processes, such as motor control, can be described by a utility set up including
some kind of forecasting, more complex processes could well be described by
the interaction of autonomous and possibly strategic structures. This view
fits relatively well with two recent approaches in neurosciences: the cognitive
unconscious, and the complex system approach, namely the cooperative and
"self-assembly" view of the mind.

Moreover, our set up of interactions raises the question of an effective unity of
the individual. It also questions the aggregation of structures over time. We may
wonder if interacting structures can learn from each other to reach a cooperative
equilibrium. This question will be left for further research.
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7 Appendix A. Form of the parameters.

We compute Eg, , P; (t 4+ n),.S; ’s expectation at time ¢, given the expression for
P; (t +n):

Pi(t+n)=> F"(t+n)X;(t+n—1)+F"" (t +n) P (t + n)
J#i
ad thus
Es, Pi(t+n)=Es,, > FY(t+n)X; (t+n—1)+Es, ,F*" (t +n) Peg (t + 1)
Ji
Using S; ’s solution to the optimization problem, i.e. X; (t) = D;P; (t), for
j # 1, leads to:

Bs, ,Pi(t+n) = Es, Y F"(t+n)D;P;(t+n—1)+ Es, F*" (t+n) Pet (t + 1)
J#i
= Y FY(t4n)DyEs Py (t+n— 1)+ B, FU (1) Pyt (£ 4+ )
J#i

On the other hand, we now need P; (t +n — 1) for j # 4. It si given by:
Bs,,Pj(t+n)=Es,, Y F'*(t+n) Xy (t+n—1)+FP" (t +n) Pegy (t + 1)
ey
Using again the non strategic agents optimization Xy, (t) = Dy Py (t) for k # i
Es, Pi(t+n) = > F*(8) DyEs, Pe(t+n—1)
k#j, ki
+F7(t) Es, , Xi (t+n—1) + Eg, ,F7“* (t + n) Pegy (t + 1)

leads to
Esi’t (P (t + n)) = ESMM (P (t +n— 1))—|—VESI.¢XZ- (t +n— 1)+ESj,tWES_,-,,,Pext (t + n)

with Mj, = F»* () (1 —8;4) Dy, for j # i and M; ; = F (t)D; and V; =
FIt(t)—=0,;F%" (t), W; = F7t (t). This allows to find ultimately Es, , (P (t + n))
and Eg, ,P; (t +n). First:

Es,,(P(t+n))=M"(P (t))+zn: M Es, ,(VX;(t+n—1)+ WPy (t+n+1-1))
=1

and projecting on S; space yields:
Es, Pi(t+n) =IM" (P )41,y M'"'Es,, (VX; (t+n—1)+ WPey (t+n+1-1))
=1

where II; is the projection operator on agent ¢ space.
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8 Appendix B. Optimization problem

The optimization problem for the strategic agent S;.is :

0 = E”aX Zﬁ”V (t+n)
n>1

Using the expression for agé;z;?) in the text leads to the following equation:

0=Es, b; Z I (B M)" ™'V (B X; (t+n) — CiP; (t +n)) | —A:X; (t)+B;P; (t)

n>1
(9)
All S; forecasts at time ¢ can be built from (P (t)). Morevover S; ’s optimiza-
tion problem at time ¢ does not depend on past actions :. at each period, the
past is unaccounted for. The situation is reset to 0. Ultimately, all equations in
our problem are linear. Consequently, S; will linearly choose X; (t) as a linear
function of (P (¢)) : X; (¢t) = G; (P (¢)).

To find G}, we first replace X; (t) in Eg,, (P (t +n)):

(P

Es.,(P(t+n)) = Eg M(P({t+n-1))
+VEs, Xi(t+n—1)+WEs, Peyi (t+n)

= ESi,t (M-FVGl) (P(t+n—1))+WEs P (t—|—n)

This is solved recursively to yield:

Es,, (P(t+n)) = (M+VG)"(P(t)) (10)

+Es,, > (M +VG) " WPy (t+n+1-1) (11)
=1

Tunring back to the optimization equation and introducing 10 in 9 gives:

0 = B | Y IL(BM)" "'V (B;Gi — Cilly) [(M + VGy)" + ME™] (P (t))]

n>1

—A;X; (t) + BiP; (1)

where M =31 | (M +VG; i WFgE 117" and T1°** is the projector send-

ing (P (1)) on Poe ().
Isolating X; (¢) is straightforward

X (t) = DiP; (t) + B;11; (i (B;M)" V (B;G; — CiIL;) (M + VGi)nJrl) (P (t))

n=0
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and yields, after identification with G; (P (t)):
G; = D;ll; + B,1L; (Z (8;M)" V (B,G; — CiILy) ((M +VG)" + Mﬁﬂ))
n=0

as claimed in the text.
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9 Appendix C. The strategic agent in the 2 struc-
ture model

The vector (P (t)) is three dimensional, since:
ao
P (t
o= ) ={ «o
ay ()
Thus, the optimal action as (t) = G2 (P (t)) encompasses three parameters.

We therefore let Gy = ( a b c )

We first find (a,b,c) : using the parameters values as defined in the text
yields the matrices needed for the identification of G5 .

BQZDQZQ,CQZ’)/,Dlz(l —1)

0 0 0 0
V=1 ],m=(00 1),M=[0 0 0
0 1 -1 0
0 0 O 0 0 0
M+VGy, = a b ¢ |, V(BGa—Chllh)=| aa ba ca—vy
1 -1 0 0 0 0
1 0 0 n
ot e . 1= (M+VG)" rr on
Fext HE.Lt — 00 0 ME.Lt — ext HE.Lt
t,t+n O 0 0 9 n 1 _ (M + VGQ) t,t+n

Note that (3,M)" = 0 for n > 2.
Replacing these matrices in the equation defining G4

Gy = DyTly+B,11, <Z (B, M)V (BaGa — Co1ls) ((M +VG) T M;“;iﬁ))

n=0

leads to the system of equations for a, b, c:

a = B5((1—a)(y—ca)—balc+ab+a)—ax)
b = B2 (ba (€= b%) = b(y — cav))
c = a—f (cab® + ¢ (v — ca))

Given that o —~ < 0, one can check that there are two solutions for the vector
(a,b,c):

CcC =

(v83+1) %/ (v63+1)° ~4a(ap3) b= 0 q—  Pia—ca)
2(ap3) ’ ’ 1483 (atvy—ca)
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Moreover, taking into account ¢ ~ « for §, — 0, the solution is :

\/(vﬂi +1)% — 40263 + 463~ 1

- \/(763 +1)° — 40282 + 2082 + (B2 + 1)
b = 0
o sy - V(82 +1)° — da (o)
2 (a3)
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